Decomposition Of β-Closed Sets In Supra Topological Spaces

S. Dayana Mary¹ and N. Nagaveni²

^{1,2} (Department of Mathematics, Coimbatore Institute of Technology, India)

Abstract: - In this paper, we introduce a new class of sets called supra β - locally closed sets and new class of maps called supra β -locally continuous functions. Furthermore, we obtain some of their properties.

Keywords: - S- β -LC sets, S- β -LC* sets, S- β -LC** sets, S- β -L-continuous and S- β -L-irresolute.

I.

INTRODUCTION

Njastad [1] defined and studied β -sets in topological spaces. Bourbaki [2] defined a subset of space (X, τ) is called locally closed, if it is the intersection of an open set and a closed set. In topological space, some classes of sets namely generalized locally closed sets were introduced and investigated by Balachandran et al. [3]. The notion of β -locally closed set in topological spaces was introduced by Gnanambal and Balachandran [4]. Mashhour et al. [5] introduced the supra topological spaces and studied S-continuous functions and S*-continuous functions. Ravi et al. [6] introduced and studied a class of sets and maps between topological spaces called supra β -open sets and supra β -continuous maps, respectively. Dayana Mary [7] introduce a new class of sets called supra generalized locally closed sets and new class of maps called supra generalized locally continuous functions. They also introduce a new class of sets called supra regular generalized locally closed sets [8] and S-RGL-continuous functions.

In this paper we introduce the concept of supra β -locally closed sets and study its basic properties. Also we introduce the concepts of supra β -locally continuous maps and investigate several properties for these classes of maps.

II. PRELIMINARIES

Throughout this paper, (X, τ) , (Y, σ) and (Z, η) (or simply, X, Y and Z) represent topological space on which no separation axioms are assumed, unless explicitly stated. For a subset A of (X, τ) , cl (A) and int (A) represent the closure of A with respect to τ and the interior of A with respect to τ , respectively. Let P(X) be the power set of X. The complement of A is denoted by X-A or A^c.

Now we recall some Definition:s and results which are useful in the sequel.

Definition:: 2.1 [5,9]

Let X be a non-empty set. The subfamily $\mu \subseteq P(X)$ is said to a supra topology on X if $X \in \mu$ and μ is closed under arbitrary unions. The pair (X, μ) is called a supra topological space.

The elements of μ are said to be supra open in (X, μ). Complement of supra open sets are called supra closed sets. **Definition:: 2.2 [9]**

Let A be a subset (X, μ) . Then

(i) The supra closure of a set A is, denoted by $cl^{\mu}(A)$, defined as $cl^{\mu}(A) = \cap \{B : B \text{ is a supra closed and } A \subseteq B\}$.

(ii) The supra interior of a set A is, denoted by $int^{\mu}(A)$, defined as $int^{\mu}(A) = \bigcup \{B : B \text{ is a supra open and } B \subseteq A\}$.

Definition:: 2.3 [5]

A Let (X, τ) be a topological space and μ be a supra topology of X. We call μ is a supra topology associated with τ if $\tau \subseteq \mu$.

Definition:: 2.4 [10]

Let (X, τ) and (Y, σ) be two topological spaces and $\tau \subseteq \mu$. A function f: $(X, \tau) \rightarrow (Y,\sigma)$ is called supra continuous, if the inverse image of each open set of Y is a supra open set in X. Definition:: 2.5 [11]

Let (X, τ) and (Y, σ) be two topological spaces and μ and λ be supra topologies associated with τ and σ respectively. A function $f: (X, \tau) \rightarrow (Y, \sigma)$ is said to be supra irresolute, if $f^1(A)$ is supra open set of X for every supra open set A in Y.

Definition:: 2.6 [6]

Let (X, μ) be a supra topological space. A subset A of X is called supra β -open if $A \subseteq cl^{\mu}(int^{\mu}(cl^{\mu}(A)))$.

The complement of supra β -open set is called supra β -closed. The class of all supra β -open sets is denoted by S- $\beta O(X)$

Definition:: 2.7 [6]

Let A be a subset (X, μ) . Then

(i) The supra β -closure of a set A is, denoted by $cl^{\mu}_{\beta}(A)$, defined as $cl^{\mu}_{\beta}(A) = \bigcap \{B : B \text{ is a supra } \beta\text{-closed and } A \subseteq B\}$.

(ii) The supra β -interior of a set A is, denoted by $int_{\beta}^{\mu}(A)$, defined as $int_{\beta}^{\mu}(A) = \bigcup \{B : B \text{ is a supra } \beta$ -open and $B \subseteq A\}$.

III. SUPRA β -LOCALLY CLOSED SETS

In this section, we introduce the notions of supra β -locally closed sets and discuss some of their properties.

Definition:: 3.1

Let (X, μ) be a supra topological space. A subset A of (X, μ) is called supra β -locally closed set (briefly supra β -LC set), if $A=U \cap V$, where U is supra β -open in (X, μ) and V is supra β -closed in (X, μ) .

The collection of all supra generalized locally closed sets of X will be denoted by S-β-LC(X).

Remark: 3.2

Every supra β -closed set (resp. supra β -open set) is S- β -LC.

Definition: 3.3 For a subset A of supra topological space (X, μ) , $A \in S-\beta-LC^*(X, \mu)$, if there exist a supra β -open set U and a supra closed set V of (X, μ) , respectively such that $A=U \cap V$.

Definition: 3.4

For a subset A of (X, μ) , $A \in S-\beta-LC^{**}(X, \mu)$, if there exist an supra open set U and a supra β -closed set V of (X, μ) , respectively such that $A=U \cap V$.

Definition: 3.5

Let (X, μ) be a supra topological space. If the space (X, μ) is called a supra B-space, then the collection of all supra β -open subsets of (X, μ) is closed under finite intersection.

Example 3.6

Let $X = \{a, b, c, d\}$ and $\mu = \{\phi, X, \{a\}, \{a, b\}, \{b, c\}, \{a, b, c\}\}$. Then S- $\beta O(X) = \{\phi, X, \{a\}, \{b\}, \{a, b\}, \{a, c\}, \{a, d\}, \{a, b, c\}, \{a, b, d\}, \{a, c, d\}\}$. Hence (X, μ) is supra B-space.

Definition: 3.7

Let A, B \subseteq (X, μ). Then A and B are said to be supra β -separated if A $\cap cl^{\mu}_{\beta}(B) = B \cap cl^{\mu}_{\beta}(A) = \phi$.

Theorem: 3.8

Let A be a subset of (X, μ) . If $A \in S-\beta-LC^*(X, \mu)$ or $A \in S-\beta-LC^{**}(X, \mu)$, then A is S- β -LC.

Proof: The proof is obvious by Definition:s and the following example.

Example 3.9

Proof:

 $Let X = \{a, b, c, d\} and \mu = \{\phi, X, \{a\}, \{a, b\}, \{b, c\}, \{a, b, c\}\}. Then S-\beta-LC(X, \mu) = S-\beta-LC^*(X, \mu) = P(X). S-\beta-LC^*(X, \mu) = P(X)-\{\{a, d\}, \{a, c, d\}\}.$

Theorem: 3.10 For a subset A of (X, μ) , the following are equivalent:

- (i) $A \in S-\beta-LC^*(X, \mu)$.
- (ii) $A = U \cap cl^{\mu}(A)$, for some supra β -open set U.
- (iii) $cl^{\mu}(A) A$ is supra β -closed.
- (iv) $A \cup [X cl^{\mu}(A)]$ is supra β -open.
- (i) \Rightarrow (ii): Given $A \in S \beta LC^*(X, \mu)$

Then there exist a supra β -open subset U and a supra closed subset V such that $A=U \cap V$. Since $A \subset U$ and $A \subset cl^{\mu}(A)$, $A \subset U \cap cl^{\mu}(A)$.

Conversely, $cl^{\mu}(A) \subset V$ and hence $A = U \cap V \supset U \cap (cl^{\mu}(A))$. Therefore, $A = U \cap cl^{\mu}(A)$

(ii) \Rightarrow (i):Let $A = U \cap cl^{\mu}(A)$, for some supra β -open set U. Then, $cl^{\mu}(A)$ is supra closed and hence $A = U \cap cl^{\mu}(A) \in S$ -GLC*(X, μ).

(ii) \Rightarrow (iii): Let $A = U \cap cl^{\mu}(A)$, for some supra β -open set U. Then $A \in S-\beta-LC^{*}(X, \mu)$. This implies U is supra β -open and $cl^{\mu}(A)$ is supra closed. Therefore, $cl^{\mu}(A) - A$ is supra β -closed.

(iii) \Rightarrow (ii): Let U= X – [$cl^{\mu}(A)$ - A]. By (iii), U is supra β -open in X. Then A = U $\cap cl^{\mu}(A)$ holds.

(iii) \Rightarrow (iv): Let $Q = cl^{\mu}(A) - A$ be supra β -closed. Then X-Q = X - $[cl^{\mu}(A) - A] = A \cup [(X - cl^{\mu}(A)]]$. Since X-Q is supra β -open, $A \cup [X - cl^{\mu}(A)]$ is supra β -open.

(iv) \Rightarrow (iii): Let $U = A \cup [(X - cl^{\mu}(A)]]$. Since X - U is supra β -closed and $X - U = cl^{\mu}(A) - A$ is supra β -closed.

Theorem: 3.11

Proof:

For a subset A of (X, μ) , the following are equivalent:

- (i) $A \in S-\beta-LC(X, \mu)$.
- (ii) $A = U \cap cl^{\mu}_{\beta}(A)$, for some supra β -open set U.
- (iii) $cl^{\mu}_{\beta}(A)$ A is supra β -closed.
- (iv) $A \cup [X cl^{\mu}_{\beta}(A)]$ is supra β -open.
- (v) $A \subseteq int^{\mu}_{\beta}(A \cup [X cl^{\mu}_{\beta}(A)]).$

 $(i) \Rightarrow$

(ii): Given
$$A \in S-\beta-LC(X, \mu)$$

Then there exist a supra β -open subset U and a supra β -closed subset V such that $A=U \cap V$. Since $A \subset U$ and $A \subset cl^{\mu}_{\beta}(A)$, $A \subset U \cap cl^{\mu}_{\beta}(A)$.

Conversely $cl_{\beta}^{\mu}(A) \subset V$ and hence $A = U \cap V \supset U \cap cl_{\beta}^{\mu}(A)$. Therefore $A = U \cap cl_{\beta}^{\mu}(A)$.

(ii) \Rightarrow (i): Let $A = U \cap cl^{\mu}_{\beta}(A)$, for some supra β -open set U. Then we have, $cl^{\mu}_{\beta}(A)$ is supra β -closed and hence $A = U \cap cl^{\mu}_{\beta}(A) \in S-\beta-LC^*(X,\mu)$.

(ii) \Rightarrow (iii): Let A = U $\cap cl_{\beta}^{\mu}(A)$, for some supra β -open set U.

Then $A \in S-\beta-LC(X, \mu)$. This implies U is supra β -open and $cl^{\mu}_{\beta}(A)$ is supra β -closed. Therefore, $cl^{\mu}_{\beta}(A) - A$ is supra β -closed.

(iii) \Rightarrow (ii): Let U= X – [$cl_{\beta}^{\mu}(A)$ - A]. By (iii), U is supra β -open in X. Then A = U $\cap cl_{\beta}^{\mu}(A)$ holds.

(iii) \Rightarrow (iv): Let $Q = cl^{\mu}_{\beta}(A) - A$ be supra β -closed. Then $X - Q = X - [cl^{\mu}_{g}(A) - A] = A \cup [(X - cl^{\mu}_{\beta}(A)]]$. Since X-Q is supra β -open, $A \cup [X - cl^{\mu}_{\beta}(A)]$ is supra β -open.

(vi) \Rightarrow (iii): Let $U = A \cup [(X - cl_{\beta}^{\mu}(A)]]$. Since X - U is supra β -closed and $X - U = cl_{\beta}^{\mu}(A) - A$ is supra β -closed.

$$\Rightarrow (v): \qquad \text{Since } U = A \cup [(X - cl_{\beta}^{\mu}(A)] \text{ is supra-}\beta \text{-open, } A \subseteq int_{\beta}^{\mu}(A \cup [(X - cl_{\alpha}^{\mu}(A)]).$$

$$(v) \Rightarrow (iv)$$
: It is obvious.

Theorem: 3.12

(vi)

Let $(X,\,\mu)$ be a supra B-space and $A \subset X$ be S-\beta-LC. Then

(i) $int^{\mu}_{\beta}(A) \in S-\beta-LC(X, \mu).$

(ii) $cl^{\mu}_{\beta}(A)$ is contained in a supra β -closed set.

(iii) A is supra β -open if $cl^{\mu}_{\beta}(A)$ is supra β -open.

Proof: (i) Let $A = U \cap cl^{\mu}_{\beta}(A)$, for some supra β -open set U. Now, $int^{\mu}_{\beta}(A) = int^{\mu}_{\beta}(U \cap cl^{\mu}_{\beta}(A)) = int^{\mu}_{\beta}(U) \cap int^{\mu}_{\beta}(A) = int^{\mu}_{\beta}(U) \cap cl^{\mu}_{\beta}(A)$. Thus $int^{\mu}_{\beta}(A)$ is S- β -LC.

(ii)
$$cl^{\mu}(A) = cl^{\mu}(U \cap cl^{\mu}(A)) \subset cl^{\mu}(U) \cap cl^{\mu}(A)$$
 which is a supra β -close

(iii)
$$\operatorname{int}_{\beta}^{\mu}(A) = \operatorname{int}_{\beta}^{\mu}(U \cap cl_{\beta}^{\mu}(A)) = \operatorname{int}_{\beta}^{\mu}(U) \cap \operatorname{int}_{\beta}^{\mu}(cl_{\beta}^{\mu}(A)) = \operatorname{U}_{\beta}^{\mu}(A) = \operatorname{A} \operatorname{since} cl_{\beta}^{\mu}(A) \operatorname{is} \operatorname{supra}_{\beta}^{\mu}(A)$$

Theorem: 3.13

If $A \subset B \subset X$ and B is S- β -LC, then there exists a S- β -LC set C such that $A \subset C \subset B$.

Proof: Immediate.

Theorem: 3.14

For a subset A of (X, μ) , if $A \in S-\beta-LC^{**}(X, \mu)$, then there exist an supra open set G such that $A = G \cap cl^{\mu}(A)$. Proof: Let $A \in S-\beta-LC^{**}(X, \mu)$. Then $A=G \cap V$, where G is supra open set and V is supra β -closed set. Then $A = G \cap V$ $\Rightarrow A \subset G$. Obviously, $A \subset cl^{\mu}(A)$. $\therefore A \subset G \cap cl^{\mu}(A)$ ----- (1)

Also we have $cl^{\mu}(A) \subset V$. This implies $A = G \cap V \supset G \cap cl^{\mu}(A) \Rightarrow A \supset G \cap cl^{\mu}(A) \dashrightarrow$ (2) From (1) and (2), we get $A = G \cap cl^{\mu}(A)$.

For a subset A of (X, μ) , if $A \in S-\beta-LC^{**}(X, \mu)$, then there exist an supra open set G such that $A = G \cap cl^{\mu}_{\beta}(A)$. Proof: Let $A \in S-\beta-LC^{**}(X, \mu)$.

Then $A=G \cap V$, where G is supra open set and V is supra β -closed set.

Then A = G \cap V \Rightarrow A \subset G. Then A \subset $cl_{\beta}^{\mu}(A)$. Therefore, A \subset G \cap $cl_{\beta}^{\mu}(A)$ ----- (1)

Also we have $cl_{\beta}^{\mu}(A) \subset V$. This implies, $A = G \cap V \supset G \cap cl_{\beta}^{\mu}(A) \Longrightarrow A \supset G \cap cl_{\beta}^{\mu}(A)$ ----- (2)

From (1) and (2), we get $A = G \cap cl^{\mu}_{\beta}(A)$.

Theorem: 3.16

Let A be a subset of (X, μ) . If $A \in S-\beta-LC^{**}(X, \mu)$, then $cl^{\mu}_{\beta}(A) - A \operatorname{supra} \beta$ -closed and $A \cup [(X - cl^{\mu}_{\beta}(A)]$ is supra β -open.

Proof: The proof is obvious from the Definition:s and results.

Remark 3.17

The converse of the above Theorem: need not be true as seen the following example.

Example 3.18

Let X = {a, b, c, d} and $\mu = \{\phi, X, \{a\}, \{a, b\}, \{b, c\}, \{a, b, c\}\}$. Then { $\phi, X, \{a\}, \{b\}, \{a, c\}, \{a, c\}, \{a, d\}, \{a, b, c\}, \{a, c\}, \{a, c\}, \{a, c\}, \{a, b\}, \{a, c\}, \{a, c\}, \{a, b, c\}, \{a, c, d\}\}$ is the set of all supra β -closed sets in X and S- β -LC**(X, μ) = P(X) – {a, d} and {a, c, d}. If A = {a, d}, then $cl^{\mu}_{\beta}(A) - A = \{c\}$ is supra β -closed and A $\cup [(X - cl^{\mu}_{\beta}(A)] = \{a, b, d\}$ is supra β -open but A \notin S- β -LC**(X, μ). Theorem: 3.19

Suppose (X, μ) is a supra B-space. Let $A \in S-\beta-LC(X, \mu)$ and $B \in S-\beta-LC(X, \mu)$. If A and B are supra β -separated, then $A \cup B \in S-\beta-LC(X, \mu)$.

Proof: Let $A \in S-\beta-LC(X, \mu)$ and $B \in S-\beta-LC(X, \mu)$. By Theorem: 2, there exist supra β -open sets P and S of (X, μ) such that $A = P \cap cl^{\mu}(A)$ and $B = S \cap cl^{\mu}(B)$. Put $L = P \cap [X - cl^{\mu}(B))]$ and $M = S \cap [X - cl^{\mu}(A)]$. Then $L \cap cl^{\mu}_{\beta}(A) = [P \cap (X-cl^{\mu}_{\beta}(B))] \cap cl^{\mu}_{\beta}(A) = P \cap (cl^{\mu}_{\beta}(B))^{c} \cap cl^{\mu}_{g}(A) = A \cap (cl^{\mu}_{g}(B))^{c} = A$, since $A \subset (cl^{\mu}_{\beta}(B))^{c}$. Similarly, $M \cap cl^{\mu}_{\beta}(B) = B$. Then $L \cap cl^{\mu}_{\beta}(B) = \phi$ and $M \cap cl^{\mu}_{\beta}(A) = \phi$. Since X is a supra B-space, L and M are supra β -open. $(L \cup M) \cap L \cap cl^{\mu}_{\beta}(A \cup B) = (L \cup M) \cap (cl^{\mu}_{\beta}(A) \cup cl^{\mu}_{\beta}(B)) = (L \cap cl^{\mu}_{\beta}(A)) \cup (L \cap cl^{\mu}_{\beta}(B)) \cup (M \cap cl^{\mu}_{\beta}(A)) \cup (M \cap cl^{\mu}_{\beta}(B)) = A \cup B$. Therefore $A \cup B \in S-\beta$ -LC(X, μ).

Remark: 3.20

The following is one of the example of the above Theorem:.

Example: 3.21

Consider the example 3.9. Let $A = \{a\}$ and $B = \{b\}$. Then A and B are supra β -separated, because if $A \cap cl^{\mu}_{\beta}(B) = B \cap cl^{\mu}_{\beta}(A) = \phi$. Then $A \cup B = \{a, b\} \in S - \beta - LC(X, \mu)$.

Definition: 3.22

Let (X, μ) be a supra topological space. A subset A of (X, μ) is called supra β -dense, if $cl^{\mu}_{\beta}(B) = X$. Definition: 3.23 A supra topological space (X, μ) is called supra β -submaximal, if every supra β -dense subset is supra β -open in X. Example 3.24

Consider the example 3.9. Here X, $\{a, b\}$, $\{a, b, c\}$ and $\{a, b, d\}$ are the supra β -dense sets and also supra β -open sets in X. Therefore X is supra β -submaximal. Theorem: 3.25

A supra topological space (X, μ) is supra β -submaximal if and only if $P(X) = S-\beta-LC(X)$ holds.

Proof: Necessity: Let $A \in P(X)$ and $G = A \cup [X - cl^{\mu}_{\beta}(A)]$. Then $cl^{\mu}_{\beta}(G) =$ and so G is supra β -dense and hence supra β -open by assumption. By Theorem: 3.11, $A \in S - \beta - LC(X)$. Hence $P(X) = S - \beta - LC(X)$.

Sufficiency: Let every subset of X be supra β -locally closed. Let A be supra β -dense in X. Then $cl^{\mu}_{\beta}(A) = X$. Now $A = A \cup [X - cl^{\mu}_{\beta}(A)]$. By Theorem: 3.11, A is supra β -open. Hence X is supra β -submaximal. Theorem: 3.26

Let (X, μ) and (Y, λ) be the supra topological spaces.

(1) If $M \in S$ - β -LC(X, μ) and $N \in S$ - β -LC(Y, λ), then $M \times N \in S$ - β -LC(X × Y, $\mu \times \lambda$).

(2) If $M \in S$ - β -LC*(X, μ) and $N \in S$ - β -LC*(Y, λ), then $M \times N \in S$ - β -LC*(X $\times Y, \mu \times \lambda$).

(3) If $M \in S - \beta - LC^{**}(X, \mu)$ and $N \in S - \beta - LC^{**}(Y, \lambda)$, then $M \times N \in S - \beta - LC^{**}(X \times Y, \mu \times \lambda)$.

Proof: Let $M \in S$ -SLC(X, μ) and $N \in S$ - β -LC(Y, λ). Then there exist a supra semi-open sets P and P' of (X, μ) and (Y, λ) and supra semi-closed sets Q and Q' of (X, μ) and (Y, λ) respectively such that $M = P \cap Q$ and $N = P' \cap Q'$. Then $M \times N = (P \times P') \cap (Q \times Q')$ holds. Hence $M \times N \in S$ - β -LC(X $\times Y$, $\mu \times \lambda$).

Similarly, the proofs of (2) and (3) follow from the Definition:s.

IV. SUPRA GENERALIZED LOCALLY CONTINUOUS FUNCTIONS

In this section we define a new type of functions called Supra β -locally continuous functions (S- β -L-continuous functions), supra β -locally irresolute functions and study some of their properties. Definition: 4.1

Let (X, τ) and (Y, σ) be two topological spaces and $\tau \subseteq \mu$. A function $f: (X, \tau) \rightarrow (Y,\sigma)$ is called S- β -L-continuous (resp., S- β -L* - continuous, resp., S- β -L** - continuous), if $f^{1}(A) \in S-\beta$ -LC (X,μ) , (resp., $f^{1}(A) \in S-\beta$ -LC* (X,μ)) for each $A \in \sigma$. Definition: 4.2

Let (X, τ) and (Y, σ) be two topological spaces and μ and λ be a supra topologies associated with τ and σ respectively. A function $f: (X, \tau) \rightarrow (Y,\sigma)$ is said to be S- β -L-irresolute (resp., S- β -L*- irresolute, resp., S- β -L*- irresolute) if $f^{-1}(A) \in S-\beta$ -LC (X,μ) , (resp., $f^{-1}(A) \in S-\beta$ -LC* (X,μ) , resp., $f^{-1}(A) \in S-\beta$ -LC* (X,μ)) for each $A \in S-\beta$ -LC (Y, λ) (resp., $A \in S-\beta$ -LC* (Y, λ)), resp., $A \in S-\beta$ -LC* (Y, λ)). Theorem: 4.3

Let (X, τ) and (Y, σ) be two topological spaces and μ be a supra topology associated with τ . Let $f: (X, \tau) \to (Y, \sigma)$ be a function. If f is S- β -L*-continuous or S- β -L**-continuous, then it is S- β -L-continuous. Proof: The proof is trivial from the Definition:s.

Theorem: 4.4

Let (X, τ) and (Y, σ) be two topological spaces and μ and λ be a supra topologies associated with τ and σ respectively. Let $f: (X, \mu) \rightarrow (Y, \sigma)$ be a function. If f is S- β -L-irresolute (respectively S- β -L* – irresolute, respectively S- β -L**-irresolute), then it is S- β -L-continuous. (respectively S- β -L*-continuous, respectively S- β -L**-continuous). Proof: By the Definition:s the proof is immediate.

Remark 4.5

Converse of Theorem: 4.3 need not be true as seen from the following example.

Example 4.6

Let $X = Y = \{a, b, c, d\}$ with $\tau = \{\phi, X, \{a, b, c\}\}$, $\sigma = \{\{\phi, Y, \{a, b, d\}\}$ and $\mu = \{\phi, X, \{a, c\}, \{b, c\}, \{a, b, c\}, \{a, b, c\}, \{a, b, d\}\}$. Define $f : (X, \mu) \rightarrow (Y, \sigma)$ by f(a)=a, f(b)=c, f(c)=d and f(d)=b. Here f is not S- β -L**- continuous, but it is S- β -L- continuous. Also f is not S- β -L**- continuous, but it is and S- β -L* - continuous. Remark 4.7

The following example provides a function which is S- β -L**- continuous function but not S- β -L**- irresolute function.

Example 4.8

Let $X = Y = \{a, b, c, d\}$ with $\tau = \{\phi, X, \{b, c\}, \{a, b, c\}\}, \sigma = \{\{\phi, Y, \{a, b, c\}\}, \mu = \{\phi, X, \{a, c\}, \{b, c\}, \{a, b, c\}, \{a, b, d\}, \{b, c, d\}\}$ and $\lambda = \{\phi, Y, \{a\}, \{b, c\}, \{a, b, c\}, \{a, b, d\}\}$. Let $f : (X,\mu) \to (Y,\sigma)$ be the identity map. Here f is not S- β -L^{*}- irresolute, but it is S- β -L^{*}- continuous.

Theorem: 4.9

Let $f: (X, \tau) \rightarrow (Y, \sigma)$ be supra β -LC-continuous and A be supra β -closed in X. Then the restriction $f \mid A : A \rightarrow Y$ is S- β -L-continuous.

Proof: Let U be supra open in Y. Then $f^{-1}(U)$ in supra β -LC in X. So $f^{-1}(U) = G \cap F$ where G is supra β -open and F is supra β -closed in X. Now $(f/A)^{-1}(U) = (G \cap F) \cap A = G \cap (F \cap A)$ (resp. $(G \cap A) \cap F$) where $F \cap A$ is supra β -closed (resp. $G \cap A$ is supra β -open) in X. Therefore $(f/A)^{-1}(U)$ is supra β -LC in X. Hence $f \mid A$ is supra β -L-continuous. Theorem: 4.10

A space $(X,\,\mu)$ is supra β -submaximal if and only if every function having $(X,\,\mu)$ as domain is supra β -L-continuous.

Proof: Necessity: Let (X, μ) be supra β -submaximal. Then β -LC(X) = P(X) by Theorem: 3.25. Let f: $(X, \mu) \rightarrow (Y, \lambda)$ be a function and $A \in \sigma$. Then $f^{-1}(A) \in S-\beta$ -LC(X) and so f is S- β -L-continuous.

Sufficiency: Let every function having (X, μ) as domain be supra β -L-continuous. Let $Y = \{0, 1\}$ and $\sigma = \{\phi, Y, \{0\}\}$. Let $A \subset (X, \mu)$ and f: $(X, \mu) \rightarrow (Y, \lambda)$ be defined by f(x) = 0 if $x \in A$ and f(x) = 1 if $x \notin A$. Since f is supra β -L-continuous, $A \in S$ - β -LC (X, μ) . Therefore P(X) = S- β -LC(X) and so X is supra β -submaximal by Theorem: 3.25. Theorem: 4.11

If $g: X \to Y$ is S- β -L-continuous and $h: Y \to Z$ is supra continuous, then $hog : X \to Z$ is S- β -L-continuous. Proof: Let $g: X \to Y$ is S- β -L-continuous and $h: Y \to Z$ is supra continuous. By the Definition:s, $g^{-1}(V) \in S-\beta$ -LC (X), $V \in Y$ and $h^{-1}(W) \in Y$, $W \in Z$. Let $W \in Z$. Then $(hog)^{-1}(W) = (g^{-1} h^{-1})(W) = g^{-1}(h^{-1}(W)) = g^{-1}(V)$, for $V \in Y$. From this, $(hog)^{-1}(W) = g^{-1}(V) \in S$ -GLC (X), $W \in Z$. Therefore, hog is S- β -L- continuous. Theorem: 4.12

If $g:X\to Y$ is S-\beta-L – irresolute and $h:Y\to Z$ is S-β-L-continuous , then h o $g:X\to Z$ is S-β-L – continuous.

Proof: Let $g: X \to Y$ is S- β -L – irresolute and $h: Y \to Z$ is S- β -L-continuous. By the Definition:s, $g^{-1}(V) \in S-\beta$ -LC (X), for $V \in S-\beta$ -LC (Y) and $h^{-1}(W) \in S-\beta$ -LC (Y), for $W \in Z$. Let $W \in Z$. Then $(hog)^{-1}(W) = (g^{-1} h^{-1}) (W) = g^{-1}(h^{-1}(W)) = g^{-1}(V)$, for $V \in S-\beta$ -LC (Y). This implies, $(hog)^{-1}(W) = g^{-1}(V) \in S-\beta$ -LC (X), $W \in Z$. Hence hog is S- β -L- continuous. Theorem: 4.13

If $g: X \to Y$ and $h: Y \to Z$ are S- β -L – irresolute, then $h \circ g: X \to Z$ is also S- β -L – irresolute.

Proof: By the hypothesis and the Definition:s, we have $g^{-1}(V) \in S-\beta-LC(X)$, for $V \in S-\beta-LC(Y)$ and $h^{-1}(W) \in S-\beta-LC(Y)$, for $W \in S-\beta-LC(Z)$. Let $W \in S-\beta-LC(Z)$. Then $(hog)^{-1}(W) = (g^{-1} h^{-1})(W) = g^{-1}(h^{-1}(W)) = g^{-1}(V)$, for $V \in S-GLC(Y)$. Therefore, $(hog)^{-1}(W) = g^{-1}(V) \in S-\beta-LC(X)$, $W \in S-GLC(Z)$. Thus hog is S-GL - irresolute.

REFERENCES

- [1]. O. Njastad, On some classes of nearly open sets, *Pacific. J. Math.*, 15 (1965), 961-970.
- [2]. N. Bourbaki, General Topology, Part 1, Addison-Wesley (Reading, Mass, 1966)
- [3]. K Balachandran, P Sundaram and H Maki. Generalized locally closed sets and GLC-continuous functions, *Indian J. Pure Appl. Math.*, 27 (3) (1996), 235-244.
- [4]. Y. Gnanambal and K. Balachandran, β-closed sets and β- LC-continuous functions, *Mem. Fac. Sci. Kochi Univ. Math.*, (19) (1998), 35-44.
- [5]. A S Mashhour, A A Allam, F S Mahmond and F H Khedr. On Supra topological spaces, *Indian J.Pure and Appl. Math.*, *14*(4) (1983), 502-610.
- [6]. O. Ravi, G. Ramkumar and M. Kamaraj, On supra β-open sets and supra β-continuity on topological spaces proceed, *National seminar* held at sivakasi, India, (2011), 22-31.
- [7]. S. Dayana Mary and N. Nagaveni, Decomposition of generalized closed sets in supra topological spaces, International Journal of Computer Application, Aug 2012, Accepted.
- [8]. S. Dayana Mary and N. Nagaveni, On decomposition of regular generalized continuity in supra topological spaces, *Asian Journal of Current Engineering and Maths*, Aug 2012, Accepted.
- [9]. O R Sayed and T Noiri. On supra b-open sets and supra b-continuity on topological spaces, *European J. Pure and Appl. Math.*, *3*(2) (2010), 295-302.
- [10]. R. Devi, S. Sampathkumar and M. Caldas, On supra α-open sets and Sα continuous functions, General Mathematics, 16(2) (2008), 77-84.
- [11]. M. Kamaraj, G. Ramkumar and O. Ravi, On Supra quotient mappings, *International Journal of Mathematical Archive*, 3 (1) (2012), 245-252.